If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2-10x+30=0
a = -16; b = -10; c = +30;
Δ = b2-4ac
Δ = -102-4·(-16)·30
Δ = 2020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2020}=\sqrt{4*505}=\sqrt{4}*\sqrt{505}=2\sqrt{505}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{505}}{2*-16}=\frac{10-2\sqrt{505}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{505}}{2*-16}=\frac{10+2\sqrt{505}}{-32} $
| 60=3(2x)+2x | | u+8/2=5-2u-4/5 | | 3x+3x+x-23+44+45=360 | | 4x^=9 | | 3(4x+1)=15x-3 | | .5x-3x=7(x+5) | | 4x2-225=0 | | 3f^2-19f+16=0 | | 4x2-255=0 | | x2-11x+10=-6x+4 | | x2+8x+23=8 | | b9=-108 | | I+8/2=5-2u-4/5 | | (12-3i)(7+3i)=0 | | 3x^+5=38 | | b9=-208 | | a^2+24=26 | | 16+x/3=-12 | | x2+2x-12=4x-4 | | 12x+5=1/12x | | X(6+x)=374 | | (2x-4)(x=2) | | x2+x+7=9 | | -7(1-x)+x=-(9-2x)+9 | | 15/11=w−15/8 | | X+2X-X+7=4x-x+4 | | -0.4(x-3.8)=-0.2 | | -0.3x=-2.1 | | 8(x-)=5(x+4) | | (4x+9)/3=7x+10 | | O.3x=-4.5 | | 25-r²=4r |